2 research outputs found

    (User-friendly) formal requirements verification in the context of ISO26262

    Get PDF
    Abstract In order to achieve the highest safety integrity levels, ISO26262 recommends the use of formal methods for various verification activities, throughout the lifecycle of safety-related embedded systems for road vehicles. Since formal methods are known to be difficult to use, one of the main challenges raised by these ISO26262 requirements is to find cost-effective approaches for being compliant with them. This paper proposes an approach for requirements formal verification where formal methods, languages, and tools are only minimally exposed to the user, and are integrated into one of the commonly used system modeling environments based on SysML. This approach does not require particular expertise in formal methods still allowing to apply them. Hence, personnel training costs and development costs should be kept limited. The proposed approach has been implemented as a plugin of the Topcased environment. Although it is limited to discrete system models, it has been successfully experimented on an industrial use case

    Resident cardiac stem cells.

    No full text
    The introduction of stem cells in cardiology provides new tools in understanding the regenerative processes of the normal and pathologic heart and opens new options for the treatment of cardiovascular diseases. The feasibility of adult bone marrow autologous and allogenic cell therapy of ischemic cardiomyopathies has been demonstrated in humans. However, many unresolved questions remain to link experimental with clinical observations. The demonstration that the heart is a self-renewing organ and that its cell turnover is regulated by myocardial progenitor cells offers novel pathogenetic mechanisms underlying cardiac diseases and raises the possibility to regenerate the damaged heart. Indeed, cardiac stem progenitor cells (CSPCs) have recently been isolated from the human heart by several laboratories although differences in methodology and phenotypic profile have been described. The present review points to the potential role of CSPCs in the onset and development of congestive heart failure and its reversal by regenerative approaches aimed at the preservation and expansion of the resident pool of progenitors
    corecore